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Geometryczny model mózg-umysł
Mózg  Umysł

   Obiektywne  Subiektywne
Neurodynamika: aktywność neuronalna mózgu 
mierzona za pomocą EEG, MEG, NIRS-OT, PET, 
fMRI i innych technik.

Mapowanie S(M)S(U), ale jak można 
opisać stan umysłu?  
Nie wystarczy opis werbalny, potrzebna jest 
przestrzeń, której wymiary odpowiadają 
subiektywnemu doświadczeniu.  
Stany umysłowe, ruch myśli   trajektorie w 
przestrzeniach psychologicznych.  

Problem: nie mamy dobrej fenomenologii. 
E. Schwitzgabel, Perplexities of consciousness 
MIT Press 2011.
R.T. Hurlburt & E. Schwitzgabel, Describing Inner Experience? MIT Press 2007.



Modele umysłu
• 1994: Towards Artificial Minds. Pierwsza Konf. Pol. Tow. Sieci Neuronowych
• 1996: Computational physics of the mind. Computer Phys.Comm. 97: 136-153
• 1997: Platonic model of mind as an approximation to neurodynamics. In: 

Brain-like computing and intelligent information systems, Springer, 491-512
• 2001: Facing the hard question. Commentary on J.A. Gray, BBS 24 (2001)
• 2003: Just bubbles? Com. on S. Lehar, Gestalt Isomorphism and the Primacy 

of Subjective Conscious Experience: A Gestalt Bubble Model. BBS 26(4) 
• 2005: Rules, Similarity, and Threshold Logic. Com. on E.Pothos, The Rules 

versus Similarity distinction), Behavioral and Brain Sciences, 28 (1): 23
• 2005: Brain-inspired conscious computing architecture. Journal of Mind and 

Behavior 26(1-2), 1-22.
• 2013: Duch W, Brains and Education: Towards Neurocognitive Phenomics.  

Book chapter, in: Learning while we are connected,  pp. 12-23. 
• 2017: Finc K, Bonna K, Lewandowska M, Wolak T, Nikadon J, Dreszer J, Duch 

W, Kühn S. Transition of the functional brain network related to increasing 
cognitive demands. Human Brain Mapping 38(7), 3659–3674. 



Psychological spaces
Psychological spaces  and topological psychology, some ideas from physics:  
Kurt Lewin, The conceptual representation and the measurement of 
psychological forces (1938). Idea: cognitive dynamic movement in 
phenomenological (hodological) space. Discrete Process Model (DPM) 
Force ~ transition probability between states in valence fields.
George Kelly (1955), personal construct psychology, geometry of 
psychological spaces as alternative to logic. A complete theory of cognition, 
action, learning and intention. 
P-space: region in which we may place and 
classify elements of our experience, 
constructed and evolving, „a space without 
distance”, divided by dichotomies.
Roger Shepard (1957-2001), P-spaces : 
•   minimal dimensionality
•   distances that monotonically decrease 
    with increasing similarity 
   (multi-dimensional non-metric scaling). 



Some connections
Geometric/dynamical ideas related to mind may be found in many fields:

Philosophy: Mind as motion, ed. R.F. Port, T. van Gelder (MIT Press 1995)

Linguistics: G. Fauconnier, Mental Spaces (Cambridge U.P. 1994). 
Mental spaces and non-classical feature spaces. 

J. Elman, Language as a dynamical system (San Diego, 1997).
Stream of thoughts, sentence as a trajectory in P-space. 

Psycholinguistics: M.J. Spivey, The Continuity of Mind (OUP 2007)

T. Landauer, S. Dumais, Latent Semantic Analysis Theory, Psych. Rev. (1997) 
Semantics requires about 300 dim. to capture associations. 

Neuroscience: Anderson, van Essen (1994): Superior Colliculus maps as PDFs

AI: problem spaces - reasoning, problem solving, SOAR, ACT-R

Folk psychology: to put in mind, to have in mind, to keep in mind, to make up 
one's mind, be of one mind ... (space).

Mind-map.gif


Mapping brain states to mental images
Neurodynamics: bioelectrical activity of the brain, neural activity measured 
using EEG, MEG, NIRS-OT, PET, fMRI, other techniques.

Mental states, movement of thoughts   trajectories in psychological spaces.
1. From simulations and neuroimaging to mental trajectories.   
2. From neuroimaging to mental images. 

Mapping State(Brian)State(Mind)   
Via intermediate models. 



Phenomics
Why we have such transitions in networks? 
Phenomics is the branch of science concerned with identification 
and description of measurable physical, biochemical and 
psychological traits of organisms.  
Genom, proteom, interactom, exposome, virusom , connectom … 
omics.org has a list of over 400 various  …omics !

Human Genome Project, since 1990. 
Human Epigenome Project, since 2003.
Human Connectome Project, since 2009.
Developing Human Connectome  Project,  UK  2013 + many others. 

Behavior, personality, cognitive abilities <= phenotypes at all levels. 
Still many white spots on maps of various phenomes.  
Behaviormetrika (Springer), quantitative approaches to human behaviors. 

Can neurocognitive phenomics be developed to understand behavior of people?  



Neuropsychiatric
Phenomics in 6 Levels
Consortium for Neuropsychiatric 
Phenomics (CNP)/NIMH RoDC approach:

Research Domain Criteria (RoDC) 
analyzes 5 large brain systems – 
negative/positive valence systems, 
arousal, cognitive, affective systems – 
through interaction of Genes, Molecules, 
Cells, Circuits, Physiology, Behavior, Self-
Report, and  Research Paradigms. 
From genes to cognitive subsystems and 
behavior, neurons and networks are right 
in the middle of this hierarchy.
=> Neurodynamics is the key! 



NIMH RDoC Matrix for deregulation of large brain systems.
Instead of classification of mental disease by symptoms use Research Domain 
Criteria (RDoC) based on multi-level neuropsychiatric phenomics.

1. Negative Valence Systems, primarily responsible for responses to 
aversive situations or context, such as fear, anxiety, and loss.

2. Positive Valence Systems are primarily responsible for responses to 
positive motivational situations or contexts, such as reward seeking, 
consummatory behavior, and reward/habit learning.

3. Cognitive Systems are responsible for various cognitive processes.
4. Social Processes Systems mediate responses in interpersonal settings of 

various types, including perception and interpretation of others’ actions.
5. Arousal/Regulatory Systems are responsible for generating activation of 

neural systems as appropriate for various contexts, providing appropriate 
homeostatic regulation of such systems as energy balance and sleep.



RDoC Matrix for „cognitive domain”



From Genes to Neurons

Genes => Proteins => receptors, ion channels, synapses 
=> neuron properties, networks, neurodynamics 

=> cognitive phenotypes, abnormal behavior, syndromes.



From Neurons to Behavior

Genes => Proteins => receptors, ion channels, synapses 
=> neuron properties, networks 

=> neurodynamics => cognitive phenotypes, abnormal behavior!



Thought: strong, coherent activation

Many processes go on in parallel, controlling the state of our bodies. 
Most are automatic, hidden from our Self. 
Processes implemented by subnetworks compete for access to the highest level 
of control, consciousness, using the winner-takes-most mechanism. 
Such processes may activate representaiton of Self in the brain.  



Brain-computer interfaces
Mind reading is an exciting and rapidly developing field. Brain-computer 
interfaces (BCI) read and interpret some activity of the brain.
Conscious, intentional activity is detected, recognizing a few simple conditions. 



Model of reading & dyslexia

Learning: mapping one of the 3 layers to the other two.
Fluctuations around final configuration = attractors representing concepts.
How to see properties of their basins, their relations?
Model in Genesis: more detailed neuron description. 

Emergent neural simulator:
Aisa, B., Mingus, B., and O'Reilly, R. 
The emergent neural modeling system. 
Neural Networks, 

21, 1045-1212, 2008. 

3-layer model of reading: 
orthography, phonology, semantics, or 
distribution of activity over 
140 microfeatures defining concepts. 
Hidden layers in between. 



Zamiast skomplikowanej 
neurodynamiki spróbujmy 
przedstawić stan mózgu jako 
trajektorię w przestrzeni określonej 
przez cechy, które dają się 
zidentyfikować dzięki introspekcji 
stanów mentalnych.

Stan mózgu => stan umysłu,
Zdefiniowany w przestrzeni 
psychologicznej. 

Tu stan mózgu = warstwa 
semantyczna i pozostałe.

Stan umysłu = wizualizacja 
trajektorii w przestrzeniach 
psychologicznych.



Transitions 

Transitions = Lewin’s psychological forces. 
Attractors = regions with positive valence. 



Transitions 

Recurrence plots and MDS visualization of trajectories of the activity in 
140-dim semantic layer during spontaneous associations in the 40-words 
microdomain, starting with the word “flag”.  Transitions = Lewin’s 
psychological forces. Attractors=regions with positive valence. 



Normal-Autism

Dwell time in attractor basin determines the speed of attention shifts. 
In case of ASD it is too long, leading to a small number of states, and poor 
development of long neural projections. 
http://kdobosz.wikidot.com/dyslexia-accommodation-parameters  

http://kdobosz.wikidot.com/dyslexia-accommodation-parameters
http://kdobosz.wikidot.com/dyslexia-accommodation-parameters
http://kdobosz.wikidot.com/dyslexia-accommodation-parameters


Normal-ADHD

In ADHD dwell time in attractor basins is very short, resulting in hyperactivity. 
b_inc_dt = time constant for increases in intracellular calcium which builds up 
slowly as a function of activation. 
Viser toolbox for time series data visualization (K. Dobosz, W. Duch ++). 

http://fizyka.umk.pl/~kdobosz/visertoolbox/
http://fizyka.umk.pl/~kdobosz/visertoolbox/


Phase Locking Value network analysis

Strength of weighted event-related networks, changes in theta EEG band in 
the space of phase locking value. Anticipation of stimuli creates weak priming 
activation that is inhibited if this is not the target stimuli (Bola, Sabel, 2015). 
Such pre-activation solves the frame problem? 



Structural connectivity Functional connectivity

Graph theory 

Signal extraction

Correlation 
matrix

Binary  matrix

Whole-brain graph

Correlation 
calculation

Human connectome and MRI/fMRI

Bullmore & Sporns (2009)

Node definition (parcelation)

Path & efficiency Clustering

Degree
d=2 Modularity



Resting state/cognitive performance

van den Heuvel et al. (2009)   |   Stevens et al. (2012)  

Characteristic 
path length l

Intellectual 
performance

Modularity

Modularity

Working memory 
performance 

Working memory 
capacity 

Network modularity  higher working 
memory capacity and performance. 

High connectivity within modules and 
sparse connections between modules 
increases effective cooperation of brain 
regions, is associated with higher IQ. 



Questions for our study

1. Can the whole-brain network properties change during active task 
performance? 

2. Is modularity, path length, global and local efficiency dependent on the 
cognitive load?  

Global Neuronal Workspace Theory (Deahene et al. 1998):  brain processes 
underlying effortful tasks require two main computational spaces: 
• a set of specialized and modular perceptual, motor, memory, evaluative, 

and attentional processors; 
• a unique global workspace composed of distributed and heavily 

interconnected neurons with long-range axons. 
Workspace neurons are mobilized in effortful tasks for which the specialized 
processors do not suffice. They selectively mobilize or suppress, through 
descending connections, the contribution of specific processor neurons.



GNWT

Global Neuronal Workspace Theory (Dehaene et al. 1998)



 Cognitive load on whole-brain network 
35 participants (17 females; Mean age = 22.6 ± 3.1; 19-31).

1-back

A

B

B

A

2-back

A

B

A

D

Instruction

30 s block
10 blocks x 3 sessions

5:30 min per session

1-back
target

2-back
target

Low cognitive effort High cognitive effort

Letter n-back task

Finc et al, Human Brain Mapping, 2017



Data workflow

Two experimental conditions: 1-back, 2-back

Node 
definition

Weighted 
correlation 

matrices

Threshold
(0.01 - 0.6)

Binary 
correlation 

matrices

Anatomical 
parcellation
(90 nodes)

Functional 
parcellation
(264 nodes)

Fisher’s 
z-scores

global efficiency      |       local efficiency      |      modularity



Changes in modularity
Modularity metric: fraction of within-community edges in the network minus such 
fraction for randomly connected network with unchanged community structure. 

Finc et al, Human Brain Mapping, 2017

Modularity for both parcellations significantly decreases for thresholds ~0.1.
Coarse parcellation washes out many effects, especially strong correlations.

Parcellation
264 ROI  
functional 

Parcellation
AAL, 90 ROI 



Changes in efficiency
Global efficiency ~ inverse characteristic path length
Local efficiency ~  clustering coefficient (Latora & Marchiori, 2001). 

Finc et al, Human Brain Mapping, 2017

Global efficiency Local efficiency

Parcelation
AAL, 90 ROI 

Parcelation
264 ROI  
functional 



Conclusions

Low cognitive 
effort

High cognitive 
effort

Segregated 
network

Integrated 
network

Locally specialized 
processing

Distributed 
processing

global efficiency

local efficiency

modularity

≠

performance

Parcellation into 264 regions (10 mm spheres) shows subnetworks more 
precisely than for 90 regions; only a small subgroup of neurons in each 
ROI is strongly correlated. 



Brain modules and cognitive processes
Simple and more difficult 
tasks, requiring the whole-
brain network reorganization. 

K. Finc et al, HBM (2017).

Left: 1-back
Right: 2-
back

Average 
over 35 
participants.

Left and 
midline 
sections. 



Brain modules and cognitive processes
Simple and more difficult tasks, requiring 
the whole-brain network reorganization. 

Left:   1-back   Top: connector hubs
Right: 2-back   Bottom: local hubs

Average over 35 participants.

Dynamical change of the landscape of 
attractors, depending on the cognitive 
load. 
Less local (especially in DMN), more 
global binding (especially in PFC).



Brain modules and cognitive processes
Simple and more difficult tasks, requiring 
the whole-brain network reorganization. 

Left:   1-back   Top: connector hubs
Right: 2-back   Bottom: local hubs

Average over 35 participants.

Dynamical change of the landscape of 
attractors, depending on the cognitive 
load. DMN areas engaged in 
global binding! 



Neuronal subnetworks

Hierarchy and modularity is observed at large scale: 
several subnetworks responsible for arousal, 
attention, positive/negative valence, perception.  
At the microcircuit level similar 
hierarchy/modularity is seen. 



ASD: pathological connections

J.F. Glazebrook, R. Wallace, Pathologies in functional connectivity, feedback 
control and robustness.  Cogn Process (2015) 16:1–16 
  

Comparison of connections 
for patients with ASD (autism 
spectrum), TSC (Tuberous 
Scelrosis), and ASD+TSC. 

Weak or missing connections 
between distant  regions 
prevent ASD/TSC patients 
from solving more demanding 
cognitive tasks. 

Network analysis becomes 
very useful for diagnosis of 
changes due to the disease 
and learning. 



ASD connectome

N. Yahata i inn, A small number of abnormal brain connections predicts adult 
autism spectrum disorder. Nature Communications (2016) 

Analysis of functional 
connections (correlated 
activity) between brain 
regions measured using fMRI 
in the resting state between 
140 ROIs has 9730 possible 
interactions. 

Selecting the most important 
and using L1-SCCA classifier 
16 connections were left, 
sufficient to reach 85% of 
accuracy distinguishing ASD 
people form the healthy ones. 



Selected connections

N. Yahata et al,  29 selected regions (ROI) and 16 connections were sufficient to 
recognize ASD with 85% accuracy in 74 Japanese adult patients, and 107 control 
group, and without re-training on 75% on US patients. 



Finn et al. (2015), Functional connectome fingerprinting: identifying 
individuals using patterns of brain connectivity. Nature Neuroscience 
Top: highly unique; Bottom: highly consistent connections. 



Brain fingerprinting: 
discover in EEG specific 
patterns of attractor 
dynamics =  subnetwork 
or specific structure 
activations. Ex: 
Visual attention-shift 
experiment.  4 (of 22) IC 
(Independent Comp.)  
cluster contributions to 
a visual stimulus ERP. 
Equivalent model dipole 
locations, mean scalp 
maps, and cluster 
projection envelopes, 
av. over 12 subjects. 

Fig. from: Makeig, 
Onton (2009)



8 selected approaches to BFP

1. Source Reconstruction/Localization, from fMRI to EEG.   
2. Graph-based approaches:  phase locking PLV, analysis of CC, RCC and 

other coefficients showing subnetwork activity.
3. Connectome-based: influence of network topography on signal 

propagation and system function; dynamic changes in network 
architecture, functional cartography.  

4. Spatio-temporal EEG maps using ERD/ERS
(t,f,E,X) => ERS/ERD => bumps => relevant dimensions (subnetworks) => 
analysis of trajectories in this space. 

5. EEG component analysis: ICA, EMD, ERM, tensor decomposition … 
6. ERP shape analysis in component space. 
7. Model-based approaches

Maping fMRI/EEG activity on network models of the brain, ex. TVB
8. Feature-based approaches – microstates, specific x(t) signatures. 



Words in the brain
Psycholinguistic experiments show that phonological 
representations activate categorical representations.

Acoustic signal => phoneme => words => semantic concepts.

Phonological processing precedes semantic by 90 ms (from N200 ERPs).

F. Pulvermuller (2003) The Neuroscience of Language. On Brain Circuits of 
Words and Serial Order. Cambridge University Press.

Left hemisphere: precise representations of symbols, including phonological 
components. Right hemisphere sees clusters of concepts, the gist. 

Action-perception 
networks inferred 
from ERP and fMRI



Words in the semantic space are grouped by their similarity. 
Words activate specific brain maps, similar words create similar maps. 
Each pixel may be activated by many words. 



Each voxel responds usually to many related words, whole categories, but 
some voxels are quite specific.    http://gallantlab.org/huth2016/ 

http://gallantlab.org/huth2016/


Each word activates a whole map of activity in the brain.   
Whole map for the word “murder” shown on the flattened cortex.  

Why such activity patterns arise? Brain subnetworks connect active areas. 

http://gallantlab.org/huth2016/   and short movie intro. 

Can one do something like that with EEG or MEG? If yes, there will be great 
application opportunities. 

http://gallantlab.org/huth2016/
http://gallantlab.org/huth2016/
./The%20brain%20dictionary-16.lnk


Narration

www.nauka.gov.pl

Nicole Speer et al.  
Reading Stories Activates Neural 
Repre-sentations of Visual and 
Motor Experiences.  Psychological 
Science 2009; 20(8): 989–999.

Thought: spatiotemporal pattern 

Meaning: always slightly 
different, depending on the 
context, but still may be 
clusterized into relatively small 
number of distinct meanings.

Sentences: trajectories in 
semantic space, building scenes, 
mind models with characters, 
objects, spatio-temporal 
relations. 



Population dynamics TVB model



Mental images - Vision
From retina through LGN (thalamus, lateral geniculate body) to the primary 
visual cortex V1, through dorsal and ventral pathways, information flows 
trough many layers, receptive fields react 
to the complex stimuli in an invariant way. 



Mental images from brain activity

Can we convert activity 
of the brain into the 
mental images that we 
are conscious of? 

Try to estimate features 
at different layers. 

8-layer convolution 
network, ~60 mln 
parameters, feature 
vectors from randomly 
selected 1000 units in 
each layer to simplify 
calculations.

Output: 1000 images.  



Brain activity  Mental image
fMRI activity can be correlated with deep CNN network features; 
using these features closest image from large database is selected. 
Horikawa, Kamitani, Generic decoding of seen and imagined objects using 
hierarchical visual features. Nature Comm. 2017. 



fMRI  CNN
Generic decoding: recognizing also images that did not appear in training. 
Data from dreams, imagery, visual activity. 

1. Use CNN to analyze >15.000 images Oi  from ImagNet database 
classifying them into 1000 categories; for each image generate 13 
types of features (CNN1–8, HMAX1–3, GIST and SIFT + BoF) coded as 
template feature vectors V(Oi) for images.  

2. Analyze fMRI data F(Oi) for 150 image categories (8 examples in each), 
select 500 voxels for V1–V4, LOC, FFA and PPA responding strongly to 
images vs scrambled images; decode feature values V(Oi) using
regression analysis R[F(Oi)] = V(Oi). 

3. For a new image On (test, imagery, dream) use regression to calculate 
feature vector R[F(On)] = V(On).  

4. Find in the database vector V(O) for category of images most similar to 
the predicted V(On), representing mental image, or recreate using 
activation maximization method an image from V(On) vector.  



Recognizing mental image
Horikawa, Kamitani, Nature Comm. 2017. 



fMRI  CNN
CNN with 8 layers, 
 ~1000 units selected/layer; 
layers 6, 7, 8 are fully connected, 
synthesis of preferred images by 
the output layer was done using 
activation maximization method. 
Same approach was used to 
decode dreams (Horikawa, 
Kamitani, FCN 2017)



fMRI  CNN
4 units randomly 
selected from 1000 in 
each layer. 
Complexity and 
invariance (rotation, 
translation, scaling) 
grows in each layer.
CNN8 has labels for 
1000 categories.
Accuracy of seen 
object can reach  >92% 
and for imagined 
objects >72%.



CNN preferowane obrazy



Understanding by creating brains

• “Here, we aim to understand the brain to 
the extent that we can make humanoid 
robots solve tasks typically solved by the 
human brain by essentially the same 
principles. I postulate that this 
‘Understanding the Brain by Creating the 
Brain’ approach is the only way to fully 
understand neural mechanisms in a 
rigorous sense.”

• M. Kawato, From ‘Understanding the Brain by Creating the Brain’ towards 
manipulative neuroscience. 
Phil. Trans. R. Soc. B 27 June 2008 vol. 363 no. 1500, pp. 2201-2214 

• Humanoid robot may be used for exploring and examining neuroscience 
theories about human brain. 

• Engineering goal: build artificial devices at the brain level of competence. 



BICA, Brain-Inspired Cognitive Architecture

Understanding subtle mental processes requires a model that should show 
how internal states create narrative “stream of consciousness”. 



The Great Artificial Brain Race
BLUE BRAIN, HBP:  École Polytechnique Fédérale de Lausanne, in 
Switzerland, use an IBM supercomputer to simulate minicolumn.

C2: 2009 IBM Almaden built a cortical simulator on Dawn, a Blue Gene/P 
supercomputer at Lawrence Livermore National Lab. C2 simulator re-
creates 109 neurons connected by 1013 synapses, small mammal brain.

NEUROGRID: Stanford (K. Boahen), developing chip for ~ 106  neurons and 
~ 1010 synapses, aiming at artificial retinas for the blind.

IFAT 4G: Johns Hopkins Uni (R.Etienne-Cummings) Integrate and Fire Array 
Transceiver, over 60K neurons with 120M connections, visual cortex model.

Brain Corporation: San Diego (E. Izhakievich), neuromorphic vision. 

BRAINSCALES: EU neuromorphic chip project, FACETS, Fast Analog 
Computing with Emergent Transient States, now BrainScaleS, complex 
neuron model ~16K synaptic inputs/neuron, integrated closed loop 
network-of-networks mimicking a distributed hierarchy of sensory, decision 
and motor cortical areas, linking perception to action. 

http://bluebrain.epfl.ch/
http://bluebrain.epfl.ch/
http://bluebrain.epfl.ch/
http://www.humanbrainproject.eu/
http://spectrum.ieee.org/computing/hardware/ibm-unveils-a-new-brain-simulator
http://www.stanford.edu/group/brainsinsilicon/neurogrid.html
http://etienne.ece.jhu.edu/projects/ifat/index.html
http://etienne.ece.jhu.edu/projects/ifat/index.html
http://etienne.ece.jhu.edu/projects/ifat/index.html
http://braincorporation.com/
http://facets.kip.uni-heidelberg.de/


DREAM top-level architecture

Natural input 
modules

Cognitive 
functions

Affective
functions

Web/text/
databases interface

Behavior 
control

Control of 
devices

Talking 
head

Text to 
speechNLP

functions

Specialized
agents

DREAM project (2003), focused on perception (visual, auditory, text 
inputs), cognitive functions (reasoning based on perceptions), natural 
language communication in well defined contexts, real time control of the 
simulated/physical head. Now Amazon, Google, Apple do it …  



From brains to machines

Source: DARPA Synapse project



Neuromorphic computers
Synapse 2015: IBM TrueNorth chip:  
~1M neurons and ¼G synapses, 5.4G transistors, 70 mW. 
NS16e module=16 chips=16M neurons, >4G synapses, requires only 1.1 W!  
Scaling: 256 modules, ~4G neurons, ~1T= 1012  synapses  < 300 W power!  
IBM Neuromorphic System can reach complexity of the human brain. 
Integrate & fire neurons, 
programming of such 
devices will not be easy. 
IBM Research created 
SyNAPSE University.
Samsung Dynamic Vision 
Sensor (DVS) for phones is 
based on TN. 
Simulation with 5x1011 
neurons and > 1014 
synapses done, 1500x 
slower than real time. 



Few Steps Towards HLI 
IEEE Computational Intelligence Society Task Force (J. Mandziuk & W. Duch), 

Towards Human-like Intelligence.  

IEEE SSCI The 5th IEEE Symposium on Computational Intelligence for Human-like 
Intelligence, Honolulu, HAWAII, USA, Nov. 27 – Dec. 1, 2017.
World Congress of Computational Intelligence 2014,  Special Session: 
Towards Human-like Intelligence (A-H Tan, J. Mandziuk, W .Duch)

AGI: conference, Journal of Artificial General Intelligence comments on Cognitive 
Architectures and Autonomy: A Comparative Review (eds. Tan, Franklin, Duch). 

BICA: Annual International Conf. on Biologically Inspired Cognitive Architectures, 
8rd Annual Meeting of the BICA Society, Moscow, August 1-5, 2017

Brain-Mind Institute Schools, International Conference on Brain-Mind (ICBM) and  
Brain-Mind Magazine (Juyang Weng, Michigan SU).

http://www.brain-mind-institute.org/


Conclusions
• We begin to understand the mappings between brain 

states and mental images – but its still a tip of iceberg. 

• Neurodynamics and neurocognitive phenomics are the key.

• Brains solve the frame problem by creating dynamical search 
spaces that restrict all plausible interpretations/solutions. 

• Brain neuroimaging  The Virtual Brain, graphical models  
mental models. 

• Neuromorphic hardware is coming and will enable construction 
of new brain models and many applications.  

Is there a shorter route 
to deep understanding of human behavior?



My group of neuro-cog-fanatics



Soul or brain: what makes us human? 
Interdisciplinary Workshop with theologians, 
Toruń 19-21.10.2016

Monthly international 
developmental seminars  
(2017): Infants, learning, 
and cognitive development

Disorders  of consciousness 

17-21.09.2017 

Autism: science, therapies
23.05.2017 



Thank for 
synchronization 
of your neurons

Google: W. Duch 
=> talks, papers, lectures … 



Projekty
Google  W. Duch => Projects => List of Projects

1. In the quest of sources of brain cognitive activity, NCN 2016-21
2. Platonic theory of mind as a shadow of neurodynamics
3. Understanding neurodynamics through visualization 

4. Development of phonematic hearing and working memory in infants and 
children (NeuroPerKog). NCN  2013-18

5. Neurocognitive approach to language
6. Conspiracy theories and formation of beliefs
7. Imagery agnosia 
8. Computational creativity 
9. Semantic spaces and word games  
10. A test-bed for integration of different Humanized Interface Technologies
11. Meta-learning, or learning how to learn 



Książki
Książki (+16 red. Artificial Neural Networks): 
• 1999: Duch W, Kucharski T, Gomuła J, Adamczak R, Metody uczenia 

maszynowego w analizie danych psychometrycznych. Zastosowanie do 
wielowymiarowego kwestionariusza osobowości MMPI-WISKAD, 650 str.

• 2000: Duch W, Korbicz J, Rutkowski L, Tadeusiewicz R (Eds), Sieci neuronowe. 
Seria: Biocybernetyka  i Inżynieria Biomedyczna, Tom 6: AOW EXIT, 850 str. 

• 2007: Duch W, Mandziuk J (Eds.), Challenges for Computational Intelligence.  
Springer, 488 pp.

• 2011: Jankowski N, Duch W, Grąbczewski K, Meta-learning in Computational 
Intelligence. Springer, 362 pp. 

• 2013:  Sieci neuronowe w inżynierii biomedycznej. Red. Tadeusiewicz R, 
Korbicz J, Rutkowski L, Duch W.  Wyd. Exit, Warszawa, str. 775.

• 2017: Mikołajewski D, Duch W, Pień mózgu. Przybliżenie aspektów 
medycznych dzięki modelowaniu biocybernetycznemu. WN UMK, 220 str. 



Granty
Trzy granty doktorantów: 
• Ewa Ratajczak - grant Preludium: BrainHeart. BrainHeart. Wpływ treningu 

HRV-biofeedback na dynamikę procesów uwagowych oraz myślenie 
dywergencyjne" (2016-17).

• Jan Nikadon - diamentowy grant "Kierunkowe związki przyczynowe pomiędzy 
zrekonstruowaną aktywnością bioelektryczną węzłów sieci uwagowej: nowa 
metoda i przykład jej praktycznego zastosowania w badaniu EEG”. 

• Karolina Finc – grant Preludium, Dynamika czasowa w przebiegu zmian 
połączeń funkcjonalnych indukowanych przez trening poznawczy. Rola różnic 
indywidualnych.  

• W.D. Autyzm: zintegrowane ujęcie. Grant MNiSW (2010-2012).



EU Projects
• 2014-2006  EUCog 1, 2, 3 - European Network for the Advancement of 

Artificial Cognitive Systems, Interaction and Robotic, FP7 coordination action.
• 2012, SINTELNET, EU FET Coordination Project in Social Intelligence (with R. 

Wójcickim, M. Miłkowskim, IFIS PAN).
• 2012, Confluence of humans and computers, EU FP7 FET Proactive 

Consultation Panel. 
• 2009-2012, 2nd European Network for the Advancement of Artificial 

Cognitive Systems, Interaction and Robotics, FP7 EU Networks Project. 
• 2008-2012, COST Action BM0605 "Consciousness: A Transdisciplinary, 

Integrated Approach" , EU COST Project
• 2008-2012, COST Action BM0601 NeuroMath "Advanced Methods For The 

Estimation Of Human Brain Activity And Connectivity", EU COST Project
• 2008-2010, Argumentation as cognitive process, UMK - Rutgers University
• 2005-2007, COST Action B27 Group, "Electric neuronal oscillations and 

cognition (ENOC)", EU COST Project. 



Zajęcia
Obecnie: 
• Wstęp do kognitywistyki, część I: Natura umysłów. 
• Wstęp do kognitywistyki, część II: Mózg, umysł i zachowanie.
• Sieci neuronowe - wykład dla IS, S2.
• Sztuczna Inteligencja i systemy ekspertowe - wykład kursowy IS S1 

Wcześniej: 
• Przetwarzanie informacji przez mózgi - wykład monograficzny (2012).
• Modelowanie Funkcji Mózgu - wykład monograficzny.
• Jak działa mózg (2008/2009).
• Neuropsychologia komputerowa, SWPS 2007, 30 g+15 g lab. 


	Slide 1
	Slide 2
	Geometryczny model mózg-umysł
	Modele umysłu
	Psychological spaces
	Some connections
	Mapping brain states to mental images
	Phenomics
	Neuropsychiatric Phenomics in 6 Levels
	Slide 10
	RDoC Matrix for „cognitive domain”
	From Genes to Neurons
	From Neurons to Behavior
	Thought: strong, coherent activation
	Brain-computer interfaces
	Model of reading & dyslexia
	Slide 17
	Transitions
	Transitions
	Normal-Autism
	Normal-ADHD
	Phase Locking Value network analysis
	Human connectome and MRI/fMRI
	Resting state/cognitive performance
	Questions for our study
	GNWT
	Cognitive load on whole-brain network
	Data workflow
	Changes in modularity
	Changes in efficiency
	Conclusions
	Brain modules and cognitive processes
	Brain modules and cognitive processes
	Brain modules and cognitive processes
	Neuronal subnetworks
	ASD: pathological connections
	ASD connectome
	Selected connections
	Slide 39
	Slide 40
	8 selected approaches to BFP
	Words in the brain
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Population dynamics TVB model
	Mental images - Vision
	Mental images from brain activity
	Brain activity  Mental image
	fMRI  CNN
	Recognizing mental image
	fMRI  CNN
	fMRI  CNN
	CNN preferowane obrazy
	Understanding by creating brains
	BICA, Brain-Inspired Cognitive Architecture
	Slide 58
	DREAM top-level architecture
	From brains to machines
	Neuromorphic computers
	Slide 62
	Conclusions
	My group of neuro-cog-fanatics
	Slide 65
	Slide 66
	Projekty
	Książki
	Granty
	EU Projects
	Zajęcia

