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Geometryczny model mozg-umyst

Mozg & Umyst
Obiektywne < Subiektywne

Neurodynamika: aktywnos¢ neuronalna moézgu
mierzona za pomocg EEG, MEG, NIRS-OT, PET,
fMRI i innych technik.

Mapowanie S(M)<&=S(U), ale jak mozna
opisac stan umystu?

Nie wystarczy opis werbalny, potrzebna jest
przestrzen, ktorej wymiary odpowiadajg
subiektywnemu doswiadczeniu.

Stany umystowe, ruch mysli < trajektorie w
przestrzeniach psychologicznych.

Problem: nie mamy dobrej fenomenologii.

E. Schwitzgabel, Perplexities of consciousness
MIT Press 2011.

R.T. Hurlburt & E. Schwitzgabel, Describing Inner Experience? MIT Press 2007.




Modele umystu

1994: Towards Artificial Minds. Pierwsza Konf. Pol. Tow. Sieci Neuronowych
1996: Computational physics of the mind. Computer Phys.Comm. 97: 136-153

1997: Platonic model of mind as an approximation to neurodynamics. In:
Brain-like computing and intelligent information systems, Springer, 491-512

2001: Facing the hard question. Commentary on J.A. Gray, BBS 24 (2001)

2003: Just bubbles? Com. on S. Lehar, Gestalt Isomorphism and the Primacy
of Subjective Conscious Experience: A Gestalt Bubble Model. BBS 26(4)

2005: Rules, Similarity, and Threshold Logic. Com. on E.Pothos, The Rules
versus Similarity distinction), Behavioral and Brain Sciences, 28 (1): 23

2005: Brain-inspired conscious computing architecture. Journal of Mind and
Behavior 26(1-2), 1-22.

2013: Duch W, Brains and Education: Towards Neurocognitive Phenomics.
Book chapter, in: Learning while we are connected, pp. 12-23.

2017: Finc K, Bonna K, Lewandowska M, Wolak T, Nikadon J, Dreszer J, Duch
W, Kiihn S. Transition of the functional brain network related to increasing
cognitive demands. Human Brain Mapping 38(7), 3659—-3674.



Psychological spaces

Psychological spaces and topological psychology, some ideas from physics:

Kurt Lewin, The conceptual representation and the measurement of
psychological forces (1938). Idea: cognitive dynamic movement in
phenomenological (hodological) space. Discrete Process Model (DPM)
Force ~ transition probability between states in valence fields.

George Kelly (1955), personal construct psychology, geometry of
psychological spaces as alternative to logic. A complete theory of cognition,

action, learning and intention.
P-space: region in which we may place and

classify elements of our experience,
constructed and evolving, ,,a space without
distance”, divided by dichotomies.

Roger Shepard (1957-2001), P-spaces :

* minimal dimensionality

* distances that monotonically decrease
with increasing similarity
(multi-dimensional non-metric scaling).




Some connections

Geometric/dynamical ideas related to mind may be found in many fields:

Philosophy: Mind as motion, ed. R.F. Port, T. van Gelder (MIT Press 1995)

Linguistics: G. Fauconnier, Mental Spaces (Cambridge U.P. 1994).
Mental spaces and non-classical feature spaces.

J. Elman, Language as a dynamical system (San Diego, 1997).
Stream of thoughts, sentence as a trajectory in P-space.

Psycholinguistics: M.J. Spivey, The Continuity of Mind (OUP 2007)

T. Landauer, S. Dumais, Latent Semantic Analysis Theory, Psych. Rev. (1997)
Semantics requires about 300 dim. to capture associations.

Neuroscience: Anderson, van Essen (1994): Superior Colliculus maps as PDFs
Al: problem spaces - reasoning, problem solving, SOAR, ACT-R

Folk psychology: to put in mind, to have in mind, to keep in mind, to make up
one's mind, be of one mind ... (space).



Mind-map.gif

Mapping brain states to mental images

Neurodynamics: bioelectrical activity of the brain, neural activity measured
using EEG, MEG, NIRS-OT, PET, fMRI, other techniques.

Via intermediate models.

Mental states, movement of thoughts < trajectories in psychological spaces.
1. From simulations and neuroimaging to mental trajectories.
2. From neuroimaging to mental images.



Phenomics

Why we have such transitions in networks?

Phenomics is the branch of science concerned with identification
and description of measurable physical, biochemical and
psychological traits of organisms.

Genom, proteom, interactom, exposome, virusom , connectom ...
omics.org has a list of over 400 various ...omics |

Human Genome Project, since 1990.

Human Epigenome Project, since 2003.

Human Connectome Project, since 20009.

Developing Human Connectome Project, UK 2013 + many others.

Behaviormetrika

Behavior, personality, cognitive abilities <= phenotypes at all levels.
Still many white spots on maps of various phenomes.
Behaviormetrika (Springer), quantitative approaches to human behaviors.

Can neurocognitive phenomics be developed to understand behavior of people?



Neuropsychiatric
Phenomics in 6 Levels

Consortium for Neuropsychiatric
Phenomics (CNP)/NIMH RoDC approach:

Research Domain Criteria (RoDC)
analyzes 5 large brain systems —
negative/positive valence systems,
arousal, cognitive, affective systems —
through interaction of Genes, Molecules,
Cells, Circuits, Physiology, Behavior, Self-
Report, and Research Paradigms.

From genes to cognitive subsystems and
behavior, neurons and networks are right
in the middle of this hierarchy.

=> Neurodynamics is the key!

DMS

DM5 1 item

5item




YRDoC

i Research Domain Criteria Initiative

NIMH RDoC Matrix for deregulation of large brain systems.

Instead of classification of mental disease by symptoms use Research Domain
Criteria (RDoC) based on multi-level neuropsychiatric phenomics.

1.

Negative Valence Systems, primarily responsible for responses to
aversive situations or context, such as fear, anxiety, and loss.

Positive Valence Systems are primarily responsible for responses to
positive motivational situations or contexts, such as reward seeking,
consummatory behavior, and reward/habit learning.

Cognitive Systems are responsible for various cognitive processes.

Social Processes Systems mediate responses in interpersonal settings of
various types, including perception and interpretation of others’ actions.

Arousal/Regulatory Systems are responsible for generating activation of
neural systems as appropriate for various contexts, providing appropriate
homeostatic regulation of such systems as energy balance and sleep.



RDoC Matrix for ,,cognitive domain”

Construct/'Subconstruct

Attention
Perception Visual Perception
Auditory Perception
Olfactory/Somatosensory/Multimodal/Perception
Declarative Memory
Language

Cognitive  Goal Selection; Updating, Representation, and
Control Maintenance = Focus 1 of 2 = Goal Selection

zoal Selection; Updating, Representation, and
Maintenance = Focus 2 of 2 = Updating,
Representation, and Maintenance

Response Selection; Inhibition/Suppression =
Focus 1 of 2 = Response Selection

Response Selection; Inhibition/Suppression =
Focus 2 of 2 = Inhibition/Suppression

Performance Monitoring
Working Active Maintenance
Memory Flexible Updating
Limited Capacity

Interference Control
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Elements
Elements

Elements

Elemants

Elemsnts

Elements

Elements

Elemants

clements
Elements
Elements
Elements

Elements

Molecules
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Elemenis
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Cells

Elements
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Elements
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Elements

Elements

Elements

Elements

Elements

Circuits

Elements
Elemenis

Elements

Elements
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Elemenis

Elements

Elements

Elements
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Elemenis
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Physiology Behavior

Elements
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Elements

Elements

Elements

Elements

Elements

Elemants

Elements
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Elemenis

Elements

Elements

Elements

Elemenis

Elements

Elements
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Self-
Report

Elemenis

Elements

Elements
Elements
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Elemenis

Elements

Elemenis

Elements

Paradigms

Clements
Elements
Elements
clements
clements
Clements

Elements

Elements

Elements

Elemants
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Elements
Elements
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From Genes to Neurons

Genes contain
instructions
for making
proteins
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Genes => Proteins => receptors, 1on channels, synapses
=> neuron properties, networks, neurodynamics
=> cognitive phenotypes, abnormal behavior, syndromes.



From Neurons to Behawor

Genes => Proteins => receptors, 1on channels, synapses
=> neuron properties, networks
=> neurodynamics => cognitive phenotypes, abnormal behavior!



Thought: strong, coherent activation

Many processes go on in parallel, controlling the state of our bodies.

Most are automatic, hidden from our Self.

Processes implemented by subnetworks compete for access to the highest level
of control, consciousness, using the winner-takes-most mechanism.

Such processes may activate representaiton of Self in the brain.



Brain-computer interfaces

Mind reading is an exciting and rapidly developing field. Brain-computer
interfaces (BCl) read and interpret some activity of the brain.

Conscious, intentional activity is detected, recognizing a few simple conditions.

Supervised

Classifiers
(LDA, SVM)

I/0O Models for

Frequency Regression

Analysis i, N Decision
(Continuous) Generative

Models
Rate Coding

(Semi- Semi-Supervised

Continuous) Reinforcement
Learning

Spikes : Trajectory
(Point Unsupervised
Metrics

State
Machines




Model of reading & dyslexia

Emergent neural simulator:

Aisa, B., Mingus, B., and O'Reilly, R.
The emergent neural modeling system.

Neural Networks,
21, 1045-1212, 2008.

3-layer model of reading:
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Learning: mapping one of the 3 layers to the other two.
Fluctuations around final configuration = attractors representing concepts.

How to see properties of their basins, their relations?
Model in Genesis: more detailed neuron description.



Zamiast skomplikowanej
neurodynamiki sprobujmy
przedstawic¢ stan mozgu jako
trajektorie w przestrzeni okreslone;j
przez cechy, ktore dajg sie
zidentyfikowac dzieki introspekg;ji Netrodvnanics
stanéw mentalnych. J

Stan mozgu => stan umystu, Psychological
Zdefiniowany w przestrzeni
psychologiczne,;.

Space

Tu stan moézgu = warstwa
semantyczna i pozostate.

Stan umystu = wizualizacja
trajektorii w przestrzeniach
psychologicznych.




Transitions

Fig. 5. "Positive central force field corresponding to a positive valence (Va>0)" (Lewin, fig. 33)

“G, region of a positive valence (Va(G)>0), located in C; P, person; the forces fac, fu,c, or
f1,c correspond to Va(G) in case P is located at A, H, or L, respectively; fxy = fxc .”

Transitions = Lewin’s psychological forces.
Attractors = regions with positive valence.



Transitions

Recurrence Plot Multidimensi
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Recurrence plots and MDS visualization of trajectories of the activity in
140-dim semantic layer during spontaneous associations in the 40-words
microdomain, starting with the word “flag”. Transitions = Lewin’s
psychological forces. Attractors=regions with positive valence.



Normal-Autism
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Dwell time in attractor basin determines the speed of attention shifts.
In case of ASD it is too long, leading to a small number of states, and poor
development of long neural projections.

http://kdobosz.wikidot.com/dyslexia-accommodation-parameters



http://kdobosz.wikidot.com/dyslexia-accommodation-parameters
http://kdobosz.wikidot.com/dyslexia-accommodation-parameters
http://kdobosz.wikidot.com/dyslexia-accommodation-parameters

Normal-ADHD
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In ADHD dwell time in attractor basins is very short, resulting in hyperactivity.

b_inc_dt = time constant for increases in intracellular calcium which builds up
slowly as a function of activation.

Viser toolbox for time series data visualization (K. Dobosz, W. Duch ++).



http://fizyka.umk.pl/~kdobosz/visertoolbox/
http://fizyka.umk.pl/~kdobosz/visertoolbox/

Phase Locking Value network analysis
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Strength of weighted event-related networks, changes in theta EEG band in
the space of phase locking value. Anticipation of stimuli creates weak priming
activation that is inhibited if this is not the target stimuli (Bola, Sabel, 2015).
Such pre-activation solves the frame problem?




Human connectome and MRI/fMRI

Node definition (parcelation)

Structural connectivity Functional connectivity
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PPN Modularity

Correlation
matrix

O
Path & efficiency

Bullmore & Sporns (2009)



Resting state/cognitive performance

Characteristic Intellectual
path length A performance
Modularity Working memory
performance
Modularity —» Working n?emory
capacity

Network modularity < higher working
memory capacity and performance.

High connectivity within modules and
sparse connections between modules
increases effective cooperation of brain
regions, is associated with higher [Q.

van den Heuvel et al. (2009) | Stevensetal. (2012)



Questions for our study

1. Can the whole-brain network properties change during active task
performance?

2. Is modularity, path length, global and local efficiency dependent on the
cognitive load?

Global Neuronal Workspace Theory (Deahene et al. 1998): brain processes

underlying effortful tasks require two main computational spaces:

* aset of specialized and modular perceptual, motor, memory, evaluative,
and attentional processors;

* aunique global workspace composed of distributed and heavily
interconnected neurons with long-range axons.

Workspace neurons are mobilized in effortful tasks for which the specialized
processors do not suffice. They selectively mobilize or suppress, through
descending connections, the contribution of specific processor neurons.



GNWT

Global Neuronal Workspace Theory (Dehaene et al. 1998)

hierarchy of modular high-level processors
processors with strong

long-distance
interconnectivity
o—q\ ®
/" / e\
; 1

4

automatically —*,°—° processors
activated mobilized

processors into the
CONscious
warkspace




Cognitive load on whole-brain network

35 participants (17 females; Mean age = 22.6 £ 3.1; 19-31).

Low cognitive effort

1-back

Letter n-back task

High cognitive effort

Instruction

2-back

30 s block
10 blocks x 3 sessi

‘v 1-back
target
B g

5:30 min per session

A

2-back
target

Finc et al, Human Brain Mapping, 2017



Data workflow

Two experimental conditions: 1-back, 2-back

Anatomical  Functional

d ﬁl\!gde parcellation parcellation

L (90 nodes) (264 nodes)
Weigh’Fed Fisher’s
correlation cores

matrices

Binary Threshold |

correlation (0.01-0.6) |

matrices

global efficiency | local efficiency | modularity



Changes in modularity

Modularity metric: fraction of within-community edges in the network minus such
fraction for randomly connected network with unchanged community structure.

Parcellation Parcellation
AAL, 90 RO 264 RO
functional

o

Modularity change AQ
Modularity change AQ

p<0.01
p<0.01 (comrected)

-0.01
-0.02
-0.03
-0.04

0.2 0.4 ; ’ ; 0.4
Threshold 6 Threshold 6

Modularity for both parcellations significantly decreases for thresholds ~0.1.
Coarse parcellation washes out many effects, especially strong correlations.

Finc et al, Human Brain Mapping, 2017



Changes in efficiency

Global efficiency ~ inverse characteristic path length
Local efficiency ~ clustering coefficient (Latora & Marchiori, 2001).

Global efficiency Local efficiency
0.01
y
< < ml__/\,.___.,../""f.-
g £ o0
> o
8 5 002
£ <
Parcelation © *__p<0.01 (corrected) 3 ¢ p<0.01 (comected)
0.2 0.4 : 0.4
AA I_ ) 90 RO I Threshold & Threshold 6
= 8
> Y
o Q
T 2
2 )
g 4
o
G} ¢ p<0.01 (corrected) S ¢ p <0: 01 (comected)
264 ROI ' 0.2 0.4 P =
o Threshold & . :
fu nctiona | Threshold 6

Finc et al, Human Brain Mapping, 2017



Conclusions

Segregated Integrated
network network

global efficiency

Low cognitive local efficiency High cognitive
effort effort

DIrOCESSINE

PDIrocessing

Locally specialized ¥ modutarity Distributed

performance

Parcellation into 264 regions (10 mm spheres) shows subnetworks more
precisely than for 90 regions; only a small subgroup of neurons in each
ROl is strongly correlated.



Brain modules and cognitive processes

Simple and more difficult
tasks, requiring the whole-
brain network reorganization.

Left: 1-back
Right: 2-
back

Average
over 35

participants.

Left and
midline
sections.

Fronto-Parietal (FP)

I Memory (MEM)
Somato-Motor (SOM)

B Dcfault Mode (DM)
B ventral Attention (vA)
B salience (sa)

B cingulo-Opericular (CO)
] Auditory (AU)

B subcortical (SUB)

B Dorsal Attention (DA)

Visual (VIS)
Other

K. Finc et al, HBM (2017).

; ~
s *

1l-back Q=0.29

2-back Q=0.20



Brain modules and cognitive processes

Simple and more difficult tasks, requiring
the whole-brain network reorganization.

Provincial hubs

Left: 1-back Top: connector hubs
Right: 2-back Bottom: local hubs

Average over 35 participants.

Dynamical change of the landscape of
attractors, depending on the cognitive
load.

Less local (especially in DMN), more
global binding (especially in PFC).

|| Fronto-parietal (FP) | [l Defautt Mode (oM) [l Cinguio-Opericuiar (co) [l Dorsal Attention (DA)
B Memory (MEM) B Ventral Attention (vA) [ Auditory (AU) ] Visual (vis)

| ] somato-Motor (SOM) Salience (SA) Subcortical (SUB) [ ] other



Brain modules and cognitive processes

Simple and more difficult tasks, requiring
the whole-brain network reorganization.

Connector hubs

Left: 1-back Top: connector hubs
Right: 2-back Bottom: local hubs

Average over 35 participants.

Dynamical change of the landscape of
attractors, depending on the cognitive
load. DMN areas engaged in

global binding!

|| Fronto-parietal (FP) | [l Defauit Mode (oM) [l Cinguio-Opericuiar (co) ] Dorsal Attention (DA)

. Memory (MEM) - Ventral Attention (VA) || Auditory (AU) |:| Visual (VIS)
] Somato-Motor (SOM) Salience (SA) Subcortical (SUB)




Neuronal subnetworks

Hierarchy and modularity is observed at large scale:
several subnetworks responsible for arousal,
attention, positive/negative valence, perception.

At the microcircuit level similar
hierarchy/modularity is seen.

Brain Region

Brain Regions




ASD: pathological connections

Comparison of connections
for patients with ASD (autism
spectrum), TSC (Tuberous
Scelrosis), and ASD+TSC.

Weak or missing connections
between distant regions
prevent ASD/TSC patients
from solving more demanding
cognitive tasks.

Network analysis becomes
very useful for diagnosis of
changes due to the disease
and learning.

TSC with ASD

J.F. Glazebrook, R. Wallace, Pathologies in functional connectivity, feedback
control and robustness. Cogn Process (2015) 16:1-16



ASD connectome

Analysis of functional Anterior

connections (correlated
activity) between brain
regions measured using fMRI
in the resting state between
140 ROIs has 9730 possible
interactions.

All 9,730 FCs
considered

Posterior
Selecting the most important Superior Superior
and using L1-SCCA classifier ' da -
16 connections were left,
sufficient to reach 85% of
accuracy distinguishing ASD
people form the healthy ones.

Anterior
J0u81s0d

Inferior Inferior

N. Yahata i inn, A small number of abnormal brain connections predicts adult
autism spectrum disorder. Nature Communications (2016)



Selected connections

C Superior

a Anterior

Left
by
Anterior
>
10118]1S0d

Inferior

Posterior

N. Yahata et al, 29 selected regions (ROI) and 16 connections were sufficient to
recognize ASD with 85% accuracy in 74 Japanese adult patients, and 107 control

group, and without re-training on 75% on US patients.



Finn et al. (2015), Functional connectome fingerprinting: identifying
individuals using patterns of brain connectivity. Nature Neuroscience
Top: highly unique; Bottom: highly consistent connections.
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Brain fingerprinting:
discover in EEG specific
patterns of attractor
dynamics = subnetwork
or specific structure
activations. Ex:

Visual attention-shift
experiment. 4 (of 22) IC
(Independent Comp.)
cluster contributions to
a visual stimulus ERP.
Equivalent model dipole
locations, mean scalp
maps, and cluster
projection envelopes,
av. over 12 subjects.

Fig. from: Makeig,
Onton (2009)
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8 selected approaches to BFP

Source Reconstruction/Localization, from fMRI to EEG.

Graph-based approaches: phase locking PLV, analysis of CC, RCC and
other coefficients showing subnetwork activity.

Connectome-based: influence of network topography on signal
propagation and system function; dynamic changes in network
architecture, functional cartography.

Spatio-temporal EEG maps using ERD/ERS
(t,f,E,X) => ERS/ERD => bumps => relevant dimensions (subnetworks) =>
analysis of trajectories in this space.

EEG component analysis: ICA, EMD, ERM, tensor decomposition ...
ERP shape analysis in component space.

Model-based approaches
Maping fMRI/EEG activity on network models of the brain, ex. TVB

Feature-based approaches — microstates, specific x(t) signatures.



Words in the brain

Psycholinguistic experiments show that phonological
representations activate categorical representations.

Acoustic signal => phoneme => words => semantic concepts.
Phonological processing precedes semantic by 90 ms (from N200 ERPs).

F. Pulvermuller (2003) The Neuroscience of Language. On Brain Circuits of
Words and Serial Order. Cambridge University Press.

L»::eg—relat_e_::i WO ras Arr‘r|-rel:aj[f.f:1_ wo rds Fa::e—r‘elg‘}f:::i wo rds
Action-perception '
networks inferred

from ERP and fMRI

Left hemisphere: precise representations of symbols, including phonological
components. Right hemisphere sees clusters of concepts, the gist.



[Semantic Space]

Change i hange
sglf}{_ ! i %2
‘ ey

Words in the semantic space are grouped by their similarity.
Words activate specific brain maps, similar words create similar maps.
Each pixel may be activated by many words.



voxel [22,32,57] left I“

model performance 0.278 (p=0.000) ull
Not bad, pretty reliable

murdered
CIEWES
children
victim yife
refused
whﬁthes whon

usband

murder
aunt woman

family m

parentschild mot €
pregnant

daughter

Each voxel responds usually to many related words, whole categories, but
some voxels are quite specific. http://gallantlab.org/huth2016/



http://gallantlab.org/huth2016/

voxel [24,51,68] left

model performance: 0.207 (p=0.000) =
Not bad, pretty reli

Each word activates a whole map of activity in the brain.
Whole map for the word “murder” shown on the flattened cortex.

Why such activity patterns arise? Brain subnetworks connect active areas.

http://gallantlab.org/huth2016/ and short movie intro.

Can one do something like that with EEG or MEG? If yes, there will be great
application opportunities.



http://gallantlab.org/huth2016/
http://gallantlab.org/huth2016/
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|' ...[Mrs. Birch] went through the front door into
the Kitchen.

N a r ra ti O n [ e Birchi came

| and. after a fiendly greeting
chatted with her for a minute or so.

Nicole Speer et al.

Reading Stories Activates Neural
Repre-sentations of Visual and
Motor Experiences. Psychological
Science 2009; 20(8): 989-999.

Thought: spatiotemporal pattern

Meaning: always slightly
different, depending on the
context, but still may be
clusterized into relatively small
number of distinct meanings.

Sentences: trajectories in
semantic space, building scenes,
mind models with characters,
objects, spatio-temporal
relations.




Population dynamics TVB model
THEVIRTUALBRAIN
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Mental images - Vision

From retina through LGN (thalamus, lateral geniculate body) to the primary
visual cortex V1, through dorsal and ventral pathways, information flows
trough many layers, receptive fields react WHERE? (Motion,

i . . . Spatial Relationships)  WHAT? {Form, Color}
to the complex stimuli in an invariant way.

[Parietal stream] [Inferotempaoral stream]
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Mental images from brain activity

Can we convert activity
of the brain into the
mental images that we
are conscious of?

Try to estimate features
at different layers.

8-layer convolution
network, ~60 min
parameters, feature
vectors from randomly
selected 1000 units in
each layer to simplify
calculations.

Output: 1000 images.




Brain activity <~ Mental image

fMRI activity can be correlated with deep CNN network features;
using these features closest image from large database is selected.

Horikawa, Kamitani, Generic decoding of seen and imagined objects using
hierarchical visual features. Nature Comm. 2017.
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fMRI <~ CNN

Generic decoding: recognizing also images that did not appear in training.
Data from dreams, imagery, visual activity.

1.

Use CNN to analyze >15.000 images O. from ImagNet database

classifying them into 1000 categories; for each image generate 13
types of features (CNN1-8, HMAX1-3, GIST and SIFT + BoF) coded as
template feature vectors V(O)) for images.

Analyze fMRI data F(O,) for 150 image categories (8 examples in each),

select 500 voxels for V1-V4, LOC, FFA and PPA responding strongly to
images vs scrambled images; decode feature values V(O)) using

regression analysis R[F(O,)] = V(O,).

For a new image O, (test, imagery, dream) use regression to calculate
feature vector R[F(O )] = V(O,).

Find in the database vector V(O) for category of images most similar to
the predicted V(O,), representing mental image, or recreate using

activation maximization method an image from V(O,) vector.



Recognizing mental image

Horikawa, Kamitani, Nature Comm. 2017.
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Button press

Trial onset Cue Evaluation Post-rest

electric guitar, bat, harp,
leopard, iguana,
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hammock, coffin, airliner,
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fMRI <~ CNN

CNN with 8 layers,

~1000 units selected/layer;
layers 6, 7, 8 are fully connected,
synthesis of preferred images by
the output layer was done using
activation maximization method.

Same approach was used to
decode dreams (Horikawa,
Kamitani, FCN 2017)

DNN1 DNN2 DNN3

DNN1 DNN2
DNN4  DNN5  DNN6




fMRI <~ CNN

4 units randomly
selected from 1000 in
each layer.

Complexity and

invariance (rotation,
translation, scaling)
grows in each layer.

CNN8 has labels for
1000 categories.

Accuracy of seen
object can reach >92%
and for imagined
objects >72%.
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Understanding by creating brains

* “Here, we aim to understand the brain to
the extent that we can make humanoid
robots solve tasks typically solved by the
human brain by essentially the same
principles. | postulate that this
‘Understanding the Brain by Creating the
Brain” approach is the only way to fully
understand neural mechanisms in a
rigorous sense.”

®* M. Kawato, From ‘Understanding the Brain by Creating the Brain’ towards

manipulative neuroscience.
Phil. Trans. R. Soc. B 27 June 2008 vol. 363 no. 1500, pp. 2201-2214

®* Humanoid robot may be used for exploring and examining neuroscience
theories about human brain.

®* Engineering goal: build artificial devices at the brain level of competence.



BICA, Brain-Inspired Cognitive Architecture
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Understanding subtle mental processes requires a model that should show
how internal states create narrative “stream of consciousness”.



The Great Artificial Brain Race

BLUE BRAIN, HBP: Ecole Polytechnique Fédérale de Lausanne, in
Switzerland, use an IBM supercomputer to simulate minicolumn.

C2: 2009 IBM Almaden built a cortical simulator on Dawn, a Blue Gene/P
supercomputer at Lawrence Livermore National Lab. C2 simulator re-
creates 10° neurons connected by 10*® synapses, small mammal brain.

NEUROGRID: Stanford (K. Boahen), developing chip for ~ 10® neurons and
~ 10%° synapses, aiming at artificial retinas for the blind.

|[FAT 4G: Johns Hopkins Uni (R.Etienne-Cummings) Integrate and Fire Array
Transceiver, over 60K neurons with 120M connections, visual cortex model.

Brain Corporation: San Diego (E. Izhakievich), neuromorphic vision.

BRAINSCALES: EU neuromorphic chip project, FACETS, Fast Analog
Computing with Emergent Transient States, now BrainScaleS, complex
neuron model ~16K synaptic inputs/neuron, integrated closed loop
network-of-networks mimicking a distributed hierarchy of sensory, decision
and motor cortical areas, linking perception to action.



http://bluebrain.epfl.ch/
http://bluebrain.epfl.ch/
http://bluebrain.epfl.ch/
http://www.humanbrainproject.eu/
http://spectrum.ieee.org/computing/hardware/ibm-unveils-a-new-brain-simulator
http://www.stanford.edu/group/brainsinsilicon/neurogrid.html
http://etienne.ece.jhu.edu/projects/ifat/index.html
http://etienne.ece.jhu.edu/projects/ifat/index.html
http://etienne.ece.jhu.edu/projects/ifat/index.html
http://braincorporation.com/
http://facets.kip.uni-heidelberg.de/

DREAM top-level architecture

Web/text/
databases interface

~.

Text to
NL_P speech
functions :
Natural input ~
modules J - -
— Behavior Talking
M Cognitive [ _—~*  control  [* © head
functions
/ 3 \
) Control of
Affective devices
functions \
Specialized

agents

DREAM project (2003), focused on perception (visual, auditory, text
inputs), cognitive functions (reasoning based on perceptions), natural
language communication in well defined contexts, real time control of the
simulated/physical head. Now Amazon, Google, Apple do it ...




From brains to machines

~10"? synapses/cm? ~10°% neurons/cm?  ~10*neurons/  ~5X108 long range
cortical column axons @ 1 Hz

- ® ® « o
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Synapse Neurons Microcircuit . g 9
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Source: DARPA Synapse project




Neuromorphic computers

Synapse 2015: IBM TrueNorth chip:

~1M neurons and %G synapses, 5.4G transistors, 70 mW.
NS16e module=16 chips=16M neurons, >4G synapses, requires only 1.1 W!
Scaling: 256 modules, ¥4G neurons, ~1T= 102 synapses < 300 W power!
IBM Neuromorphic System can reach complexity of the human brain.
Integrate & fire neurons,
programming of such M“’;

devices will not be easy.

—

IBM Research created
SYNAPSE University.

Samsung Dynamic Vision
Sensor (DVS) for phones is
based on TN. .

Simulation with 5x10!
neurons and > 10%*

IJ'E"'H . 2
synapses done, 1500x % NSt6e

slower than real time.




Few Steps Towards HLI

IEEE Computational Intelligence Society Task Force (J. Mandziuk & W. Duch),
Towards Human-like Intelligence.

IEEE SSCI The 5th IEEE Symposium on Computational Intelligence for Human-like
Intelligence, Honolulu, HAWAII, USA, Nov. 27 — Dec. 1, 2017.

World Congress of Computational Intelligence 2014, Special Session:

Towards Human-like Intelligence (A-H Tan, J. Mandziuk, W .Duch)

JEE“Siyz." ‘ 'smrn rles,gga Computatlonal Intelllgencé
: - EE: SSCI 201*3 _

- ,;:-“3-—1 |

,:15,.Megn..—-1 meApﬁl 2313, .Slngapnre - _. '
‘m‘ l.l i . " 3| l 4’ Computational
Call for Papers http://www.ieee-ssci.org/ __-_1‘ e s

AGI: conference, Journal of Artificial General Intelligence comments on Cognitive
Architectures and Autonomy: A Comparative Review (eds. Tan, Franklin, Duch).

BICA: Annual International Conf. on Biologically Inspired Cognitive Architectures,
8rd Annual Meeting of the BICA Society, Moscow, August 1-5, 2017

Brain-Mind Institute Schools, International Conference on Brain-Mind (ICBM) and
Brain-Mind Magazine (Juyang Weng, Michigan SU).


http://www.brain-mind-institute.org/

Conclusions

We begin to understand the mappings between brain
states and mental images — but its still a tip of iceberg.

Neurodynamics and neurocognitive phenomics are the key.

Brains solve the frame problem by creating dynamical search
spaces that restrict all plausible interpretations/solutions.

Brain neuroimaging < The Virtual Brain, graphical models <
mental models.

Neuromorphic hardware is coming and will enable construction
of new brain models and many applications.

Is there a shorter route
to deep understanding of human behavior?



My group of neuro-cog-fanatics




Soul or brain: what makes us human? Monthly international

Interdisciplinary Workshop with theologians, developmental seminars

Torun 19-21.10.2016 (2017): Infants, learning,
and cognitive development

konferencja studencko-doktorancka

NeuroMania |V @ Disorders of consciousness

28-29 maja 2016, Torun

17-21.09.2017

Autism: science, therapies

HOMO COMMLNICATIVUS

WSPOLCZESNE DBLICZA KOMUNIKACJI | INFORMACJI

Torun, 24-25 VI 2013 r.

Cognitivist Autumn in Torun 2011
[ PHANTOMOLOGY:

2011 Torun, Poland

Cngnitivist Autumn in Toruan 2010

‘MIRROR NEURONS: | coaniivisT
| AUTUMN IN

April, 14-16 2010 Torun, Poland



Thank for
synchronization
of your neurons

Google: W. Duch
=> talks, papers, lectures ...



Projekty

Google W. Duch => Projects => List of Projects

In the quest of sources of brain cognitive activity, NCN 2016-21
2. Platonic theory of mind as a shadow of neurodynamics

3. Understanding neurodynamics through visualization

4. Development of phonematic hearing and working memory in infants and
children (NeuroPerKog). NCN 2013-18

Neurocognitive approach to language
Conspiracy theories and formation of beliefs
Imagery agnosia

Computational creativity

O 00 SINCEEE

Semantic spaces and word games
10. A test-bed for integration of different Humanized Interface Technologies

11. Meta-learning, or learning how to learn



Ksigzki

Ksigzki (+16 red. Artificial Neural Networks):

1999: Duch W, Kucharski T, Gomuta J, Adamczak R, Metody uczenia
maszynowego w analizie danych psychometrycznych. Zastosowanie do
wielowymiarowego kwestionariusza osobowosci MMPI-WISKAD, 650 str.

2000: Duch W, Korbicz J, Rutkowski L, Tadeusiewicz R (Eds), Sieci neuronowe.
Seria: Biocybernetyka i Inzynieria Biomedyczna, Tom 6: AOW EXIT, 850 str.

2007: Duch W, Mandziuk J (Eds.), Challenges for Computational Intelligence.
Springer, 488 pp.

2011: Jankowski N, Duch W, Grabczewski K, Meta-learning in Computational
Intelligence. Springer, 362 pp.

2013: Sieci neuronowe w inzynierii biomedycznej. Red. Tadeusiewicz R,
Korbicz J, Rutkowski L, Duch W. Wyd. Exit, Warszawa, str. 775.

2017: Mikotfajewski D, Duch W, Pien mozgu. Przyblizenie aspektow
medycznych dzieki modelowaniu biocybernetycznemu. WN UMK, 220 str.



Granty

Trzy granty doktorantow:

* Ewa Ratajczak - grant Preludium: BrainHeart. BrainHeart. Wptyw treningu
HRV-biofeedback na dynamike proceséw uwagowych oraz myslenie
dywergencyjne" (2016-17).

* Jan Nikadon - diamentowy grant "Kierunkowe zwigzki przyczynowe pomiedzy

zrekonstruowang aktywnoscig bioelektryczng weztow sieci uwagowej: nowa
metoda i przyktad jej praktycznego zastosowania w badaniu EEG”.

* Karolina Finc — grant Preludium, Dynamika czasowa w przebiegu zmian
potgczen funkcjonalnych indukowanych przez trening poznawczy. Rola réznic
indywidualnych.

*  W.D. Autyzm: zintegrowane ujecie. Grant MNiSW (2010-2012).



EU Projects

2014-2006 EUCog 1, 2, 3 - European Network for the Advancement of
Artificial Cognitive Systems, Interaction and Robotic, FP7 coordination action.

2012, SINTELNET, EU FET Coordination Project in Social Intelligence (with R.
Wojcickim, M. Mitkowskim, IFIS PAN).

2012, Confluence of humans and computers, EU FP7 FET Proactive
Consultation Panel.

2009-2012, 2nd European Network for the Advancement of Artificial
Cognitive Systems, Interaction and Robotics, FP7 EU Networks Project.

2008-2012, COST Action BMO0605 "Consciousness: A Transdisciplinary,
Integrated Approach"” , EU COST Project

2008-2012, COST Action BM0601 NeuroMath "Advanced Methods For The
Estimation Of Human Brain Activity And Connectivity", EU COST Project

2008-2010, Argumentation as cognitive process, UMK - Rutgers University

2005-2007, COST Action B27 Group, "Electric neuronal oscillations and
cognition (ENOC)", EU COST Project.



/ajecia

Obecnie:

Wstep do kognitywistyki, czesc I: Natura umystow.
Wstep do kognitywistyki, czesc Il: Mdzg, umyst i zachowanie.
Sieci neuronowe - wyktad dla IS, S2.

Sztuczna Inteligencja i systemy ekspertowe - wyktad kursowy IS S1

Wczesniej:

Przetwarzanie informacji przez mozgi - wyktad monograficzny (2012).
Modelowanie Funkcji Mdzgu - wyktad monograficzny.

Jak dziata mdzg (2008/2009).

Neuropsychologia komputerowa, SWPS 2007, 30 g+15 g lab.
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